
碳酸盐岩气藏提高采收率的内涵、技术方法及前景展望
Connotation, technical methods, and prospects for enhanced gas recovery in carbonate gas reservoirs
中国碳酸盐岩气藏面临提高采收率的战略性形势,目前国内外碳酸盐岩气藏提高采收率尚未建立具有普适性的理论技术体系。总结了中国近70年碳酸盐岩气藏提高采收率的理论研究和矿场实践,从“道、略、术、行”4个层面总结了5类研究范式。围绕气藏提高采收率的内涵,基于工程哲学视角建立了气藏采收率的计算方法,详细论述了评价气藏采收率的技术方法及关键问题。对比气藏提高采收率的内涵、技术方法和5类典型碳酸盐岩气藏提高采收率实践现状,在提高气藏采收率评价的系统性、不同策略提高气藏采收率的定量化评价、不同策略提高气藏采收率的可对比性3个方面提出了研究建议,以期促进中国碳酸盐岩气藏提高采收率的理念和理论技术进步,保障国家能源安全。
China's carbonate gas reservoirs are facing a strategic situation of enhanced gas recovery (EGR). Currently, there is no universally applicable theoretical and technical system for improving recovery rates in carbonate gas reservoirs both domestically and internationally. This article summarizes the theoretical research and field practice of EGR of carbonate gas reservoirs in China in the past 70 years, and summarizes five research paradigms from four levels of "Philosophy, Strategy, Tactics, Execution". Based on the connotation of EGR, a calculation method for gas reservoir recovery rate is established from the perspective of engineering philosophy, and the technical methods and key issues for evaluating gas reservoir recovery rate are discussed in detail. By comparing the connotation, technical methods, and practical status of enhanced gas recovery in five typical carbonate gas reservoirs, the following three suggestions are put forward: (1) Improve the systematic evaluation of gas reservoir recovery efficiency, integrate various research data and results from the perspective of the whole gas reservoir, and establish the workflow of understanding→new data supplement→re-understanding under the framework of "static and dynamic data integration"; (2) Quantitatively evaluate the contribution of different strategies to EGR, conduct field research and verify primary data, fully compare theoretical models with field data, improve the match of static and dynamic descriptions, and repeatedly adjust and establish reasonable prediction models; (3) Strengthen the comparative study of different strategies to enhance gas reservoir recovery, gradually upgrade the scattered different strategies from perceptual understanding to qualitative and quantitative understanding, and quantitatively evaluate the EGR values of different strategies in the research area, and quantify the role of different technologies in improving gas reservoir recovery. The research results can promote the concept and theoretical technology progress of EGR in China's carbonate gas reservoirs and ensure national energy security.
碳酸盐岩气藏 / 提高采收率 / 定量化评价 / 可对比性 / 矿场实践 / 研究展望
carbonate gas reservoirs / enhanced gas recovery / quantitative evaluation / comparability / field practice / research prospects
[1] |
中国天然气发展报告编委会. 中国天然气发展报告(2024)[M]. 北京: 石油工业出版社, 2024.
Editorial Committee of the National Natural Gas Development Report. China natural gas development report (2024)[M]. Beijing: Petroleum Industry Press, 2024.
|
[2] |
戴金星, 倪云燕, 董大忠, 等. “十四五”是中国天然气工业大发展期: 对中国“十四五”天然气勘探开发的一些建议[J]. 天然气地球科学, 2021, 32(1): 1-16.
世界10个产气大国中仅有美国、俄罗斯和伊朗年产量达2 500×10<sup>8 </sup>m<sup>3</sup>或更多,预计2025年中国年产气量将达到2 500×10<sup>8 </sup>m<sup>3</sup>。中国天然气工业大发展有3个依据:①天然气资源丰富而探明率低,仅为8.6%,具有更快发展的资源优势;②过去35年,天然气产量持续增长,具有更快发展的增长优势;③2006年以来,天然气剩余可采储量逐年上扬,具有更快发展的储量优势。近10年的天然气年产量增长率、天然气剩余可采储量和天然气储采比都支持中国2025年年产气量达2 500×10<sup>8 </sup>m<sup>3</sup>。最后提出中国“十四五”加快天然气勘探开发的建议:①开辟鄂尔多斯盆地石炭系—二叠系页岩气勘探开发新领域;②攻克3个(北天山山前坳陷、柴北坳陷和西湖凹陷)隐伏煤系潜在大气区;③加速已探明的陵水17?2气田等探明地质储量1 000×10<sup>8 </sup>m<sup>3</sup>以上的7个大气田的开发;④增加气井和超深层探井的钻探。
Among the world's 10 major gas producing countries, only the United States, Russia and Iran have annual gas production of 2 500×108 m3 or more. China is expected to have gas output of 2 500×108 m3 in 2025. There are three bases for the great development of natural gas industry in China: Firstly, the natural gas resources are rich and the proved rate is low and only 8.6%, so it has the resource advantage for faster development; Secondly, over the past 35 years, natural gas production continues to grow, with the growth advantage for faster development; Finally, since 2006, the remaining recoverable reserves of natural gas are increasing year by year, showing the reserve advantage for faster development. In recent 10 years, China's annual natural gas production growth rate, remaining recoverable reserves and reserve production ratio of natural gas support that China's annual gas production in 2025 will reach 2 500×108 m3. Suggestions for accelerating natural gas exploration and development during the 14th Five-Year Plan Period: (1) Opening new exploration and development fields of Carboniferous-Permian shale gas in Ordos Basin; (2) Explore three potential large gas districts with hidden coal measures in the northern Tianshan Piedown Depression, Qaidam Depression and Xihu Sag; (3) Accelerate the development of seven large gas fields with proved reserves over 1 000×108 m3, such as Lingshui 17-2 Gas Field; (4) Increasing the drilling of gas wells and ultra-deep exploration wells. |
[3] |
邹才能, 郭建林, 贾爱林, 等. 中国大气田科学开发的内涵[J]. 天然气工业, 2020, 40(3): 1-12.
|
[4] |
李鹭光. 中国天然气工业发展回顾与前景展望[J]. 天然气工业, 2021, 41(8): 1-11.
|
[5] |
马新华, 何东博, 位云生, 等. 天然气提高采收率理论基础、技术方法与发展方向[J]. 天然气工业, 2023, 43(1): 1-12.
|
[6] |
郭平, 景莎莎, 彭彩珍. 气藏提高采收率技术及其对策[J]. 天然气工业, 2014, 34(2): 48-55.
|
[7] |
彭彩珍, 郭平, 杜建芬. 边底水气藏提高采收率技术与实例分析[M]. 北京: 石油工业出版社, 2015.
|
[8] |
江泽民. 论科学技术[M]. 北京: 中央文献出版社, 2001.
|
[9] |
艾跃进. 军事思想纵横谈[M]. 天津: 南开大学出版社, 2005.
|
[10] |
苏义脑. 关于工程科技创新的哲学思考[J]. 石油科技论坛, 2020, 39(1): 10-14.
|
[11] |
胡浩, 周鸿, 隆辉, 等. 四川盆地老气田开发后期综合潜力分析及开发建议: 以W气田震旦系气藏为例[J]. 油气藏评价与开发, 2022, 12(6): 877-885.
|
[12] |
胡勇, 陈颖莉, 李滔. 气田开发中“气藏整体治水”技术理念的形成、发展及理论内涵[J]. 天然气工业, 2022, 42(9): 10-20.
|
[13] |
四川石油管理局. 中国第一个天然气工业基地: 四川气田[M]. 北京: 石油工业出版社, 2003.
Sichuan Petroleum Administration Bureau. China's first natural gas industry base: Sichuan gas field[M]. Beijing: Petroleum Industry Press, 2003.
|
[14] |
贾爱林, 闫海军. 不同类型典型碳酸盐岩气藏开发面临问题与对策[J]. 石油学报, 2014, 35(3): 519-527.
中国碳酸盐岩气藏主要分布在塔里木、四川和鄂尔多斯盆地,碳酸盐岩气藏开发面临着储层非均质性强、预测难度大、流体性质及分布复杂、单井产量差异大、稳产难度大等难题。立足于中国碳酸盐岩气藏的开发实践,可将中国碳酸盐岩气藏划分为:缝洞型、礁滩型、风化壳型以及层状白云岩型4种类型。不同类型碳酸盐岩气藏在储集空间、储层成因、开发特征等方面存在很大差异,气藏特征的差异导致不同类型碳酸盐岩气藏面临不同的开发难题。以中国目前正在开发的4个典型碳酸盐岩气藏为例研究不同类型气藏开发面临的问题,并在此基础上提出了典型气藏开发的解决对策,从而为不同类型碳酸盐岩气藏实现“规模建产、高效开发”提供技术支撑。
Carbonate gas reservoirs in China are mainly distributed in the Tarim, Sichuan and Ordos Basin. It is facing many problems in developing them such as the strong heterogeneity of reservoirs, the great difficulty in prediction, and the complexity of fluid property and its distribution. Meanwhile, the difference of single well productivity is always very large and it is also very hard to keep their steady production for single well or the whole reservoir. Based on the development practices, carbonate gas reservoirs in China can be divided into four types, which include fractured-vuggy, reef flat, weathering crust and layered dolomite carbonate gas field. Different types of carbonate gas reservoir have significant difference in reservoir space, reservoir genesis, and development characteristic. These differences result that the development of different type of carbonate gas reservoir faces different problems. Taking four typical carbonate gas reservoirs as an example, this paper describes the problems faced by different types carbonate gas reservoir. Meanwhile, countermeasures are proposed in order to offer technical support to different carbonate gas reservoir. Finally, it can realize commercial productivity construction and high efficient development to different types of carbonate gas reservoir. |
[15] |
杨海军, 李世银, 邓兴梁, 等. 深层缝洞型碳酸盐岩凝析气藏勘探开发关键技术: 以塔里木盆地塔中Ⅰ号气田为例[J]. 天然气工业, 2020, 40(2): 83-89.
|
[16] |
韩杰, 吴萧, 江杰, 等. 塔中Ⅰ号气田西部鹰山组碳酸盐岩储层类型划分及储层连续性分析[J]. 油气地质与采收率, 2016, 23(1): 14-21.
|
[17] |
胡勇, 彭先, 李骞, 等. 四川盆地深层海相碳酸盐岩气藏开发技术进展与发展方向[J]. 天然气工业, 2019, 39(9): 48-57.
|
[18] |
代金友, 任茜莹, 穆中奇. 井网控制程度对气藏采收率影响: 以靖边气田A井区为例[J]. 科学技术与工程, 2018, 18(30): 70-74.
|
[19] |
贾爱林, 孟德伟, 何东博, 等. 开发中后期气田产能挖潜技术对策: 以四川盆地东部五百梯气田石炭系气藏为例[J]. 石油勘探与开发, 2017, 44(4): 580-589.
以四川盆地东部五百梯气田为例,针对开发中后期气田面临的开发不均衡、低渗低效储量多且动用程度低、气井动态产能变化导致配产不合理、气井普遍产水、富集区采出程度高且综合递减率高及缺少新的储量动用评价和剩余储量分布预测方法等主要问题,提出五百梯气田开发后期技术对策。技术对策主要有:①地层划分与构造描述,依据地震解释资料精细刻画断层及构造起伏变化;②储渗单元划分和定量表征,动、静态结合评价储渗体形态、尺度、连通性及含气规模;③流体分布及动态响应分析,综合构造、储集层及气井生产动态特征,分析确定气藏气水分布规律;④储量动用程度评价与产能复核,从静态地质储量和动态储量角度评价气藏储量动用情况及剩余可动储量规模,明确下一步动用方向,校正气井产能,指导气井开发后期合理生产制度的确定;⑤静态地质模型建立及动态修正,利用精细三维地质建模和数值模拟手段预测气藏压力及剩余储量分布特征;⑥剩余储量预测及分类评价,结合动态修正后的预测模型,开展剩余储量分类评价,指导产能挖潜部署;⑦采气工艺技术及工具研发,针对开发中后期气田的现状,提出针对性的采气工艺技术并研发了配套工具。图11表3参29
Taking the carboniferous reservoir of Wubaiti gas field in eastern Sichuan Basin as an example, the technology strategies are proposed about the following major problems during the middle to late stage of gas field development: imbalance development, low permeability and low efficient reserves left with low producing degree, unreasonable proration caused by changes of gas well dynamic productivity, universal water production in gas wells, high reserve recovery and composite decline rate of reserve-rich region, and lack of new methods for reserves producing evaluation and remaining reserves distribution prediction. The development technical strategies for Wubaiti gas field are as follows: (1) stratigraphic subdivision and structural description in which fault and tectonic fluctuations are describe based on seismic interpretation data; (2) division and quantitative characterization of reservoir units in which the reservoir shape, scale, connectivity and gas-bearing range are evaluated according to dynamic and static data; (3) fluid distribution and dynamic response analysis in which gas-water distribution pattern is figured out by combining structure, reservoir and gas well production dynamic characteristics; (4) reserves producing degree evaluation and deliverability review in which reserves producing degree and remaining recoverable reserves scale are evaluated from the perspective of static geological reserves and dynamic reserves, to make clear the direction of the next step production and establish rational production system in the late stage; (5) static geological model establishment and dynamic correction in which gas reservoir pressure and remaining reserve distribution are predicted by using fine 3D geological modeling and numerical simulation; (6) remaining reserves prediction and classified evaluation based on the dynamic revision prediction model to guide the recovery of remaining reserves; and (7) gas production technology and equipment development, targeted gas recovery techniques are provided concerning the mature gas field.
|
[20] |
李鹭光. 四川油气田天然气开发技术新进展[J]. 天然气工业, 2008, 28(1): 5-8.
|
[21] |
曹光强, 姜晓华, 李楠, 等. 产水气田排水采气技术的国内外研究现状及发展方向[J]. 石油钻采工艺, 2019, 41(5): 614-623.
|
[22] |
夏崇双. 不同类型有水气藏提高采收率的途径和方法[J]. 天然气工业, 2002, 22(增刊1): 73-77.
|
[23] |
胡勇, 邵阳, 陆永亮, 等. 低渗气藏储层孔隙中水的赋存模式及对气藏开发的影响[J]. 天然气地球科学, 2011, 22(1): 176-181.
水在低渗气藏储层孔隙中普遍存在,影响储层供气能力。根据储层孔隙结构形态建立孔隙结构模型,研究了水在不同孔隙类型中的赋存模式及影响气相渗流的机理,在此基础上,采用仿真物理模拟实验技术,研究气藏发生水侵的条件及其对低渗储层供气能力的影响。研究结果表明:气藏储层孔隙中水主要以可动水和残余水2种方式赋存,两者是与储层物性、气驱压力直接相关的变量参数。可动水主要赋存于大孔隙及裂缝中,残余水在不同孔隙形态中有不同的赋存模式,对气相渗流的影响也存在差异。当气藏中水体大于6.0PV时易发生水侵,经过润湿作用形成部分残余水,滞留孔隙喉道中,占据甚至堵塞气相渗流通道,使气井外围储层储量动用滞后甚至难以动用,从而影响低渗气藏有效开发。
<p>It is normal to see that some water occurs in low permeability gas reservoir which influences the gas supply ability. The paper builds a model according to the pore structure, studies the occurrence models of water in different pores and the mechanism that influences the gas flows. The paper also studies the water breakthrough condition in the gas reservoir and the influence to the gas supply ability by physical simulation method. The result shows that there are two types of water in pores, movable water and residual water, which are both determined by reservoir physical properties and gas drive pressure. Movable water mainly occurrs in the fracture and big pores, and the residual water has many occurrence models in differential pores. The result also shows that when the water body is bigger than 6.0PV in gas reservoir, it′s easy to break into the formation. After wetting, some water is remained in the pore just as residual water occupying part or whole flow path. This will make the reserves far from the well and difficult to be employed, so it will influence development of the low permeability gas reservoir.</p>
|
[24] |
沈伟军, 李熙喆, 刘晓华, 等. 裂缝性气藏水侵机理物理模拟[J]. 中南大学学报(自然科学版), 2014, 45(9): 3283-3287.
|
[25] |
刘华勋, 任东, 高树生, 等. 边、底水气藏水侵机理与开发对策[J]. 天然气工业, 2015, 35(2): 47-53.
|
[26] |
王璐, 杨胜来, 刘义成, 等. 缝洞型碳酸盐岩储层气水两相微观渗流机理可视化实验研究[J]. 石油科学通报, 2017, 2(3): 364-376.
|
[27] |
吴克柳, 朱清源, 陈掌星, 等. 边底水碳酸盐岩气藏提高采收率的微观驱气效率[J]. 天然气工业, 2023, 43(1): 122-131.
|
[28] |
高树生, 杨明翰, 叶礼友, 等. 低渗透底水气藏水侵动态模拟实验及其对采收率的影响[J]. 天然气工业, 2022, 42(3): 61-70.
|
[29] |
曾大乾, 张庆生, 李童, 等. 四川盆地普光高含硫气田长周期高产稳产关键技术[J]. 天然气工业, 2023, 43(1): 65-75.
|
[30] |
谢姗, 伍勇, 张建国, 等. 低渗碳酸盐岩气藏提高采收率技术对策[J]. 科学技术与工程, 2020, 20(6): 2231-2236.
|
[31] |
谢军. 安岳特大型气田高效开发关键技术创新与实践[J]. 天然气工业, 2020, 40(1): 1-10.
|
[32] |
孙贺东, 李世银, 刘志良, 等. 缝洞型碳酸盐岩凝析气藏提高采收率关键技术[J]. 天然气工业, 2023, 43(1): 113-121.
|
[33] |
何东博, 贾爱林, 位云生, 等. 常规天然气藏均衡开发理论与关键核心技术[J]. 天然气工业, 2023, 43(1): 76-85.
|
[34] |
雍锐, 胡勇, 彭先, 等. 四川盆地天然气藏提高采收率技术进展与发展方向[J]. 天然气工业, 2023, 43(1): 23-35.
|
[35] |
袁士义, 胡永乐, 罗凯. 天然气开发技术现状、挑战及对策[J]. 石油勘探与开发, 2005, 32(6): 1-6.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
金岳霖. 形式逻辑[M]. 北京: 人民出版社, 1981.
|
[41] |
江怡. 从技术哲学到工程哲学: 一种哲学研究范式的转型[J]. 浙江学刊, 2023(5): 65-72.
|
[42] |
奥卡沙. 科学哲学[M]. 韩广忠, 译. 南京: 译林出版社, 2013.
|
[43] |
殷瑞钰, 李伯聪, 汪应洛, 等. 工程哲学[M]. 第4版. 北京: 高等教育出版社, 2022.
|
[44] |
张辉, 杨柳, 洪楚侨, 等. 崖城13-1气田提高采收率技术研究与实践[J]. 中国海上油气, 2017, 29(1): 83-88.
|
[45] |
李江涛, 项燚伟, 陈汾君, 等. 柴达木盆地涩北气田提高采收率关键技术与发展方向[J]. 天然气工业, 2023, 43(1): 141-152.
|
[46] |
李国欣, 田军, 段晓文, 等. 大幅提高超深致密砂岩气藏采收率对策与实践: 以塔里木盆地克拉苏气田为例[J]. 天然气工业, 2022, 42(1): 93-101.
|
[47] |
徐凤银, 张伟, 李子玲, 等. 鄂尔多斯盆地保德区块煤层气藏描述与提高采收率关键技术[J]. 天然气工业, 2023, 43(1): 96-112.
|
[48] |
吴正, 江乾锋, 周游, 等. 鄂尔多斯盆地苏里格致密砂岩气田提高采收率关键技术及攻关方向[J]. 天然气工业, 2023, 43(6): 66-75.
|
[49] |
董硕, 郭建林, 郭智, 等. 苏6区块气藏剩余储量评价及提高采收率对策[J]. 断块油气田, 2020, 27(1): 74-79.
|
[50] |
张健, 李保振, 周文胜, 等. 中国海上气田开发与提高采收率技术[J]. 天然气工业, 2023, 43(1): 132-140.
|
[51] |
胡纳川, 何东博, 郭建林, 等. 致密砂岩气藏水平井整体开发提高采收率: 以长岭气田登娄库组气藏为例[J]. 西安石油大学学报(自然科学版), 2021, 36(5): 55-63.
|
[52] |
李闽, 蒋琼, 廖志, 等. 水驱气藏采收率计算方法及其影响因素研究[J]. 非常规油气, 2015, 2(1): 35-40.
|
[53] |
高树生, 刘华勋, 叶礼友, 等. 致密砂岩气藏井网密度优化与采收率评价新方法[J]. 天然气工业, 2019, 39(8): 58-65.
|
[54] |
郭建林, 郭智, 崔永平, 等. 大型致密砂岩气田采收率计算方法[J]. 石油学报, 2018, 39(12): 1389-1396.
大型致密砂岩气田储层物性差,含气面积大,非均质性强,气田储量与产量规模大,采收率与最终采气量是指导气田长期稳定生产、制定开发技术对策以及衡量气田开发效果的关键指标。致密砂岩气田孔喉小,渗流机理复杂,常规的实验室模拟方法难以得到准确的采收率数据。以苏里格大型致密砂岩气田为研究对象,优选中区、东区、西区、南区等典型区块进行精细解剖,根据地质特征及开发效果将投产井分成3类;以辫状河体系带为沉积相带约束,确定各类井区的面积比例;选取生产时间较长、基本达到拟稳态的井为分析样本,利用产能不稳定分析及生产曲线积分等方法,评价各类井的井均动态储量及最终累积产量;结合储层规模、结构与生产动态特征,论证单井控制范围;对各类井区以面积比例加权,模拟预测井网足够完善时区块的技术极限采气量及采收率。研究表明,气田各区技术极限采收率为26.8%~75.5%、平均为57.0%,远低于常规气藏的80%~90%。气田技术极限采气量为2.18×10<sup>12</sup>m<sup>3</sup>,目前经济极限采气量为1.27×10<sup>12</sup>m<sup>3</sup>,可通过技术进步降低开发成本,未来增产潜力大。
<p>Giant tight sandstone gas fields are characterized with poor reservoir property, large gas bearing area, strong heterogeneity and enormous scale of reserves and production. Recovery factor and ultimate gas production are the key indicators to guide the long-term stable development of gas field, formulate development technical strategies and evaluate the development effect of gas field. Due to the small pore-throat and complex porous flow mechanism of tight sandstone gas field, it is difficult to obtain accurate recovery data using conventional laboratory simulation methods. Taking Sulige giant tight sandstone gas field as the research object, typical blocks selected from the central, east, west and south zones are detailedly analyzed, and production wells are classified into three types according to geological characteristics and development effect. The area ratios of various well blocks are restricted by braided-river sedimentary facies belts. A large-output well with long production history and basic quasi-steady state is selected as the analysis sample. The productivity instability analysis and production curvilinear integral methods are applied to evaluate the average dynamic reserves and ultimate accumulated production for each type of well. The single-well control scope is validated comprehensively using reservoir scale, structure and production dynamic characteristics. Using area proportional weight method, the gas production rate and recovery factor restricted by technological level are predicted in case of enough complete well pattern. The research result shows that the aforesaid recovery factor in each large block of gas field is 26.8%-75.5%, averaged at 57.0%, far lower than the conventional gas reservoirs of 80%-90%. Based on the current technology, this gas field has the limited production of 2.18×10<sup>12</sup>m<sup>3</sup>, and the maximum economic production is 1.27×10<sup>12</sup>m<sup>3</sup>. In the future, with the technology improvement, development cost will be reduced to achieve the large potential of output increase.</p>
|
[55] |
李熙喆, 卢德唐, 罗瑞兰, 等. 复杂多孔介质主流通道定量判识标准[J]. 石油勘探与开发, 2019, 46(5): 943-949.
为判识油气储集层中复杂多孔介质的主流通道类型,利用试井解释获取的综合渗透率与岩心测试(或测井解释)得到的基质渗透率的比值定义了“主流通道指数”,同时基于流量等效原理建立了相应的数学模型,提出了主流通道分类方法,实现了储集层流动通道类型的定量表征,并通过典型气藏实例分析验证了该方法的有效性。研究表明,“主流通道指数”能够定量划分流动通道类型:该指数小于3,基质孔隙为主要流动通道;该指数为3~20,流动通道以裂缝为主、基质孔隙为辅;该指数大于20可视裂缝为唯一渗流通道。典型气藏的动态分析显示,“主流通道指数”可用于评价多孔介质流动通道类型,进而指导气藏分类开发、规避气藏开发风险。图10参29
|
[56] |
李阳, 康志江, 薛兆杰, 等. 中国碳酸盐岩油气藏开发理论与实践[J]. 石油勘探与开发, 2018, 45(4): 669-678.
针对中国碳酸盐岩油气田成藏模式多样、构造复杂、储集层差异大的特点,跟踪分析了中国20世纪50年代以来的开发技术攻关实践,系统总结了所形成的碳酸盐岩油气藏开发理论与技术,分析了其适应性与存在问题,在此基础上提出了未来的发展方向及思路。中国碳酸盐岩油气藏开发主要形成了:①碳酸盐岩储集层的成因机制、复杂介质复合流动机理理论;②以地球物理描述、离散缝洞建模方法为核心的储集体识别和描述技术;③自由流-渗流耦合的数值模拟方法及试井分析技术;④空间结构井网设计、变强度注水和堵水封窜为核心的注水开发和氮气单井吞吐提高采收率技术;⑤钻完井、酸化压裂增产技术。进一步实现碳酸盐岩油气藏高效开发,需要开展4个方面的攻关:①发展更高精度的复杂储集层描述技术;②研发多途径的油气藏提高采收率技术;③完善和发展超深层碳酸盐岩钻井、酸化压裂改造方法,大幅降低工程成本;④加强信息技术、大数据技术、云计算、人工智能与油气藏开发的融合,实现油田开发的智能化。图5表1参46
Carbonate reservoirs in China have the characteristics of diversified accumulation pattern, complex structure and varying reservoir conditions. Concerning these characteristics, this article tracks the technical breakthroughs and related practices since the 1950s, summarizes the developed theory and technologies of carbonate reservoir development, analyzes their adaptability and problems, and proposes their development trend. The following theory and technologies have come into being: (1) carbonate reservoir formation mechanisms and compound flow mechanisms in complex medium; (2) reservoir identification and description technologies based on geophysics and discrete fracture-vuggy modeling method; (3) well testing analysis technology and numerical simulation method of coupling free flow and porous media flow; (4) enhanced oil recovery techniques for nitrogen single well huff and puff, and water flooding development techniques with well pattern design in spatial structure, changed intensity water injection, water plugging and channel blocking as the core; (5) drilling and completion techniques, acid fracturing techniques and its production increasing techniques. To realize the efficient development of carbonate oil and gas reservoirs, researches in four aspects need to be done: (1) complex reservoir description technology with higher accuracy; (2) various enhanced oil recovery techniques; (3) improving the drilling method and acid fracturing method for ultra-deep carbonate reservoir and significantly cutting engineering cost; (4) strengthening the technological integration of information, big data, cloud computation, and artificial intelligence in oilfield development to realize the smart development of oilfield.
|
[57] |
雷群, 管保山, 才博, 等. 储集层改造技术进展及发展方向[J]. 石油勘探与开发, 2019, 46(3): 580-587.
通过对储集层改造技术发展历史的总结,明确了国内外储集层改造技术的新进展,总结出国内外储集层改造技术的差距,指出未来面临的技术难点及发展方向。中国与国外储集层改造技术的差距主要表现在储集层改造裂缝扩展机理、软件研发、压裂车装备、工具的耐温耐压性、支撑剂替代、大数据信息化数据库等6个方面;未来面临技术难点主要有地质与工程一体化的深度融合不够、水平井体积改造多裂缝的扩展形态及影响因素不清楚、降本空间小环保压力大、新技术缺乏室内实验及现场试验装备、压裂液体系关键技术欠成熟、工厂化压裂设备功效低等。在此基础上,结合中国储集层改造技术发展现状,提出了6个方面的建议:①做好非常规储集层改造机理研究;②加快地质-工程一体化软件研发;③促进提高采收率改造工艺升级;④开展低成本多功能压裂液配方实验;⑤尽快完成高效压裂装备配备;⑥全面建设储集层改造大数据、信息化平台及远程决策系统。图4表1参43
|
[58] |
贾爱林, 闫海军, 郭建林, 等. 全球不同类型大型气藏的开发特征及经验[J]. 天然气工业, 2014, 34(10): 33-46.
|
[59] |
马新华, 陈建军, 唐俊伟. 中国天然气的开发特点与对策[J]. 天然气地球科学, 2003, 14(1): 15-20.
天然气资源禀赋的不同、天然气性质的不同和天然气藏类型的不同,决定了天然气开发策略、开发原则和开发方式的不同,重点研究和分析了天然气在这些方面的特殊性,提出了相应的开发对策。从长远看,由于我国常规天然气资源有限,我国一方面应继续提高天然气资源勘探程度,合理开采已探明资源,另一方面应进行非常规天然气的开发准备和考虑天然气的引进。天然气有其自身的特点,只有坚持一体化开发原则,针对不同类型气藏的特点,采用不同的开发技术和手段,依靠科技进步,降低开发成本,才能提高开发效益。
<p>The strategy, principle and pattern of gas development are controlled by reserve, gas properties and gas reservoir type. According to those, this paper carries on a detailed research and put forward corresponding measures. The conventional gas reserve is limited in China. So, we should work for enlarging gas reserve and strengthening effective exploration and development of unconventional gas. On the other hand, the gas import should be taken into consideration. Only if insisting on integrated development work, and applying relevant technologies in terms of the development properties of different gas reservoir types, we can just inc rease profit and decrease costing.</p>
|
[60] |
李江涛, 柴小颖, 邓成刚, 等. 提升水驱气藏开发效果的先期控水技术[J]. 天然气工业, 2017, 37(8): 132-139.
|
[61] |
冀光, 贾爱林, 孟德伟, 等. 大型致密砂岩气田有效开发与提高采收率技术对策: 以鄂尔多斯盆地苏里格气田为例[J]. 石油勘探与开发, 2019, 46(3): 602-612.
以致密气采收率影响因素及储集层地质特征分析为基础,从剩余气成因角度对苏里格气田已开发区致密气剩余储量进行分类,估算不同类型剩余气储量,并提出相应提高采收率技术对策。苏里格气田致密气剩余储量可划分为4类:井网未控制型、水平井漏失型、射孔不完善型和复合砂体内阻流带型,其中,井网未控制型和复合砂体内阻流带型井间未动用剩余气是气田挖潜提高采收率的主体,井网加密调整是主要手段。综合考虑储集层地质特征、生产动态响应和经济效益要求,建立定量地质模型法、动态泄气范围法、产量干扰率法、经济技术指标评价法4种直井井网加密技术,以及直井与水平井联合井网优化设计方法,论证气田富集区在现有经济技术条件下,合理井网密度为4口/km<sup>2</sup>,可将采收率由当前的32%提高到50%左右。同时针对层间未动用型剩余储量形成老井挖潜、新井工艺技术优化、合理生产制度优化、排水采气、降低废弃产量5种提高采收率配套技术,可在井网加密的基础上再提高采收率5%左右。研究成果为苏里格气田230×10<sup>8</sup> m<sup>3</sup>/a规模长期稳产及长庆气区上产提供了有效的支撑。图6表4参31
|
[62] |
江同文, 孙雄伟. 中国深层天然气开发现状及技术发展趋势[J]. 石油钻采工艺, 2020, 42(5): 610-621.
|
[63] |
《运筹学》教材编写组. 运筹学[M]. 第5版. 北京: 清华大学出版社, 2021.
Operations research textbook compilation group. Operations research[M]. 5th ed. Beijing: Tsinghua University Press, 2021.
|
[64] |
叶庆全, 袁敏. 油气田开发常用名词解释[M]. 第3版. 北京: 石油工业出版社, 2009.
|
[65] |
中华人民共和国自然资源部. 石油天然气储量估算规范:DZ/T 0217—2020[S]. 北京: 全国自然资源与国土空间规划标准化技术委员会, 2020.
Ministry of Natural Resources, People's Republic of China. Regulation of petroleum reserves estimation: DZ/T 0217—2020[S]. Beijing: National Technical Committee for Standardization of Natural Resources and Land Spatial Planning, 2020.
|
[66] |
孙贺东. 油气井现代产量递减分析方法及应用[M]. 北京: 石油工业出版社, 2013.
|
[67] |
孙贺东, 曹雯, 李君, 等. 提升超深层超高压气藏动态储量评价可靠性的新方法: 物质平衡实用化分析方法[J]. 天然气工业, 2020, 40(7): 49-56.
|
[68] |
庄惠农. 气藏动态描述和试井[M]. 北京: 石油工业出版社, 2008.
|
[69] |
厄特金 T, 阿布-卡森 J H, 金G R. 实用油藏模拟技术[M]. 张烈辉, 译. 北京: 石油工业出版社, 2004.
|
[70] |
计秉玉. 产量递减方程的渗流理论基础[J]. 石油学报, 1995, 16(3): 86-91.
从相对渗透率曲线和物质平衡原理出发导出了双曲型、调和型和指数型产量递减方程式,论证了水驱油藏产量递减方程主要取决于油相相对渗透率曲线特性并进行了有关讨论.
Based on relative permeability curve and material balance principle,hyperbolic,harmonic and exponential decline equations have been derived and the fact that decline equation on water drive reservoir mainly depends on the characteristic of relative permeability curve for oil phase has been demonstrated>and also some other related discussions have heed made in this paper.The results provided important fundamentals for the further understanding and correct use of production decline equations.
|
[71] |
位云生, 贾爱林, 徐艳梅, 等. 气藏开发全生命周期不同储量计算方法研究进展[J]. 天然气地球科学, 2020, 31(12): 1749-1756.
储量评价贯穿气藏开发始终,系统梳理气藏不同储量计算方法,对认识和开发气藏具有重要意义。前期评价阶段,分气藏类型选择容积法或体积法计算探明地质储量,指导开发概念设计和开发方案编制;方案实施阶段,落实可动用储量,指导井位部署;规模开发后,采用物质平衡与现代递减方法计算单井或气藏动态储量和可采储量,指导井网、井距、生产制度等开发技术政策优化;开发中后期,采用精细气藏描述和数值模拟方法落实剩余储量,指导挖潜部署。综合来看,储集空间结构、流体赋存状态和气藏边界是优选不同储量计算方法的重要依据,也是开发全生命周期不断认识气藏的关键参数。
Reserve evaluation is very important in the full life cycle of gas reservoir. So it is of great significance to sort out different calculation methods of reserves systematically in the process of understanding and developing gas reservoirs. In the early evaluation stage, the proved reserves, which are the basis of conceptual design and development plan for gas field development, can be calculated by the volumetric method or reservoir?volume?method according to the reservoir type. During the implementation of the development plan, producing?reserves should be determined to guide well placement. With the large-scale development the dynamic reserves and recoverable reserves of wells or reservoirs are calculated by using the material balance and modern decline method to guide the optimization of technical policies such as well pattern, well spacing and production practices. In the middle and late stage of development, gas reservoir fine description and numerical simulation are used to determine the remaining reserves and guide the tapping potential. On the whole, the three factors, the spatial structure of the reservoir, the occurrence state of the fluid and the boundary of gas reservoir are important bases for optimizing the calculation method of different reserves, are also the key parameters for continuous understanding of gas reservoir in the whole development life cycle. |
[72] |
国家能源局. 天然气可采储量计算方法:SY/T 6098—2022[S]. 北京: 石油工业出版社, 2022.
National Energy Administration. The estimated methods of natural gas recoverable reserves: SY/T 6098—2022[S]. Beijing: Petroleum Industry Press, 2022.
|
[73] |
蔡珺君, 彭先, 余平, 等. 超深层碳酸盐岩气藏流动物质平衡新方法[J]. 断块油气田, 2023, 30(4): 656-664.
|
[74] |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 天然气藏分类:GB/T 26979—2011[S]. 北京: 中国标准出版社, 2011.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. The classification of natural gas pool:GB/T 26979—2011[S]. Beijing: Standards Press of China, 2011.
|
[75] |
蔡珺君, 彭先, 杨长城, 等. 气藏描述过程中静动态资料的整合及应用[J]. 天然气地球科学, 2024, 35(6): 1082-1098.
气藏描述是气田开发地质的核心任务,气藏描述过程中静动态资料相联系的程度决定着气藏描述水平的高低。针对传统气藏描述因“地质是开发的内因”和“静动态资料结合”技术理念存在的气藏描述瓶颈,提出了“静动态资料整合”技术理念,明确了“静动态资料整合”的内涵以及“静动态资料整合”的关键点。研究结果表明:①“静动态资料整合”即在静动态资料结合、融合的基础上,关注关键细节上的静动态资料的对应或定量关系,实现基于整体观框架下静态描述和动态描述的统一与综合,包含静动态资料结合、融合和整合3个阶段;②储层改造后的结构描述、不同类型储层气井的产能评价、气井产能及其主控因素,以及基于动态分析描述气藏数值模型渗流场是“静动态资料整合”技术理念的4个关键方面;③结合四川盆地川西北区块栖霞组、安岳气田震旦系、磨溪地区雷一<sup>1</sup>亚段等领域气藏描述的探索,提升了气藏描述中储层结构、产能、产能主控因素以及精细数值模拟4个方面的可靠性和矿场实践性。研究结果奠定了“静动态资料整合”技术理念和应用思路,为四川盆地已开发气田的科学开发提供了技术支持,并可促进气藏描述水平的快速发展,对保障国家能源安全具有重要的指导意义。
Gas reservoir description is the core task of gas field development geology, and the degree of correlation between static and dynamic data in the process of gas reservoir description determines the level of gas reservoir description. Aiming at the bottleneck of gas reservoir description existed by the technical concept of “geology is the internal cause of development” and “static dynamic data integration” in traditional gas reservoir description,a technical concept of “static and dynamic data integration” was proposed,and the connotation and the key points of “static and dynamic data integration” were clarified. The research results show that:Firstly, static and dynamic data integration refers to focusing on the corresponding or quantitative relationships between static and dynamic data in key details based on the combination and fusion of static and dynamic data, achieving the unification and integration of static and dynamic descriptions based on a holistic framework, including three stages of static and dynamic data combination,fusion,and integration. Secondly,the structural description after reservoir reconstruction,productivity evaluation of different types of reservoir gas wells,productivity and main controlling factors of gas wells,and the description of gas reservoir numerical model seepage field based on dynamic analysis are four key aspects of the technical concept of “static and dynamic data integration”;Thirdly,combined with the exploration of gas reservoir description in fields such as Qixia Formation in Northwest Sichuan Block, Sinian in Anyue Gas Field,and the first sub-member of the first member of Leikoupo Formation in Moxi Area,etc.,the reliability and field practicality of reservoir structure,productivity,main controlling factors for productivity,and fine numerical simulation in gas reservoir description have been improved. The conclusion is that the research results establish a concept of “static and dynamic integration” technology and technical application methods,provide technical support for the scientific development of developed gas fields in the Sichuan Basin,and promote the rapid development of gas reservoir description level,which has important guiding significance for ensuring national energy security. |
/
〈 |
|
〉 |